Optimizing Students' Understanding of the Mechanical Properties of Stainless Steel through Interactive Learning Media based on Machine Learning

Arwizet Karudin, Desmarita Leni, Nasrullah Nasrullah, Ruzita Sumiati, Haris Haris

Abstract


Traditional learning media tends to have limitations in providing interactive experiences that can stimulate better understanding. This is supported by changes in learning styles among students, influenced by extensive exposure to computers and the internet, leading students to prefer learning with the aid of visualizations. This research designs, develops, and tests a machine learning-based visualization tool integrated with the Streamlit framework to enhance students' understanding of the mechanical properties of materials. This visualization tool consists of four main features: data analysis, correlation analysis, 3D visualization, and prediction models using machine learning. The data used for training the machine learning model includes tensile test data of low-alloy steel, comprising mechanical properties, chemical elements, and heat treatment temperatures. The research results indicate that the visualization tool can illustrate the cause-and-effect relationships of parameters influencing the changes in the mechanical properties of low-alloy steel. Each feature in this visualization tool can be utilized to support the analysis of mechanical properties and improve students' understanding of material mechanical properties. Additionally, the visualization tool is evaluated by experts, with information accuracy scoring 4 in the good category, visualization quality at 4.25 in the good category, suitability for learning at 4 in the good category, and ease of use at 4.5 in the good category. Nevertheless, further research and development are needed to test and expand the use of this visualization tool in various learning contexts and other material fields.


Keywords


: Optimization, learning media, mechanical properties, stainless steel, machine learning.

Full Text:

PDF

References


Abounaima, M. C., Mazouri, F. Z. E., Lamrini, L., Nfissi, N., Makhfi, N. E., & Ouzarf, M. (2020). The Pearson Correlation Coefficient Applied to Compare Multi-Criteria Methods: Case the Ranking Problematic. 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), 1–6. https://doi.org/10.1109/IRASET48871.2020.9092242

Agrawal, A., & Choudhary, A. (2016). Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Materials, 4(5), 053208. https://doi.org/10.1063/1.4946894

Aquilani, B., Piccarozzi, M., Abbate, T., & Codini, A. (2020). The Role of Open Innovation and Value Co-creation in the Challenging Transition from Industry 4.0 to Society 5.0: Toward a Theoretical Framework. Sustainability, 12(21), 8943. https://doi.org/10.3390/su12218943

Blaiszik, B., Ward, L., Schwarting, M., Gaff, J., Chard, R., Pike, D., Chard, K., & Foster, I. (2019). A data ecosystem to support machine learning in materials science. MRS Communications, 9(4), 1125–1133. https://doi.org/10.1557/mrc.2019.118

Coccia, M. (2020). The evolution of scientific disciplines in applied sciences: Dynamics and empirical properties of experimental physics. Scientometrics, 124(1), 451–487. https://doi.org/10.1007/s11192-020-03464-y

Cueto, E., & Chinesta, F. (2023). Thermodynamics of Learning Physical Phenomena. Archives of Computational Methods in Engineering, 30(8), 4653–4666. https://doi.org/10.1007/s11831-023-09954-5

Frydrych, K., Karimi, K., Pecelerowicz, M., Alvarez, R., Dominguez-Gutiérrez, F. J., Rovaris, F., & Papanikolaou, S. (2021). Materials Informatics for Mechanical Deformation: A Review of Applications and Challenges. Materials, 14(19), 5764. https://doi.org/10.3390/ma14195764

Gu, Z. (2022). Complex heatmap visualization. iMeta, 1(3), e43. https://doi.org/10.1002/imt2.43

Guo, Y., Slay, J., & Beckett, J. (2009). Validation and verification of computer forensic software tools—Searching Function. Digital Investigation, 6, S12–S22. https://doi.org/10.1016/j.diin.2009.06.015

Kalidindi, S. R., & De Graef, M. (2015). Materials Data Science: Current Status and Future Outlook. Annual Review of Materials Research, 45(1), 171–193. https://doi.org/10.1146/annurev-matsci-070214-020844

Khorasani, M., Abdou, M., & Hernández Fernández, J. (2022). Getting Started with Streamlit. In M. Khorasani, M. Abdou, & J. Hernández Fernández, Web Application Development with Streamlit (pp. 1–30). Apress. https://doi.org/10.1007/978-1-4842-8111-6_1

Koot, M., Mes, M. R. K., & Iacob, M. E. (2021). A systematic literature review of supply chain decision making supported by the Internet of Things and Big Data Analytics. Computers & Industrial Engineering, 154, 107076. https://doi.org/10.1016/j.cie.2020.107076

Leni, D. (2023). Prediction Modeling of Low Alloy Steel Based on Chemical Composition and Heat Treatment Using Artificial Neural Network. Jurnal Polimesin, 21(5), 54–61. https://doi.org/10.30811/jpl.v21i5.3896

Leni, D., Earnestly, F., Sumiati, R., Adriansyah, A., & Kusuma, Y. P. (2023). Evaluasi sifat mekanik baja paduan rendah bedasarkan komposisi kimia dan suhu perlakuan panas menggunakan teknik exploratory data analysis (EDA). Dinamika Teknik Mesin, 13(1), 74. https://doi.org/10.29303/dtm.v13i1.624

Miranda, J., Navarrete, C., Noguez, J., Molina-Espinosa, J.-M., Ramírez-Montoya, M.-S., Navarro-Tuch, S. A., Bustamante-Bello, M.-R., Rosas-Fernández, J.-B., & Molina, A. (2021). The core components of education 4.0 in higher education: Three case studies in engineering education. Computers & Electrical Engineering, 93, 107278. https://doi.org/10.1016/j.compeleceng.2021.107278

Mitropoulos, T., Bairaktarova, D., & Huxtable, S. (2024). The utility of mechanical objects: Aiding students’ learning of abstract and difficult engineering concepts. Journal of Engineering Education, 113(1), 124–142. https://doi.org/10.1002/jee.20573

Morgan, D., & Jacobs, R. (2020). Opportunities and Challenges for Machine Learning in Materials Science. Annual Review of Materials Research, 50(1), 71–103. https://doi.org/10.1146/annurev-matsci-070218-010015

Morini, A. A., Ribeiro, M. J., & Hotza, D. (2019). Early-stage materials selection based on embodied energy and carbon footprint. Materials & Design, 178, 107861. https://doi.org/10.1016/j.matdes.2019.107861

Nápoles-Duarte, J. M., Biswas, A., Parker, M. I., Palomares-Baez, J. P., Chávez-Rojo, M. A., & Rodríguez-Valdez, L. M. (2022). Stmol: A component for building interactive molecular visualizations within streamlit web-applications. Frontiers in Molecular Biosciences, 9, 990846. https://doi.org/10.3389/fmolb.2022.990846

Qin, R., Yang, S., Xu, Z., & Hong, T. (2023). Development of a web-based modelling framework for harmful algal blooms transport simulation using open-source technologies. Journal of Environmental Management, 325, 116616. https://doi.org/10.1016/j.jenvman.2022.116616

Rajan, K. (2005). Materials informatics. Materials Today, 8(10), 38–45. https://doi.org/10.1016/S1369-7021(05)71123-8

Rajan, K. (2015). Materials Informatics: The Materials “Gene” and Big Data. Annual Review of Materials Research, 45(1), 153–169. https://doi.org/10.1146/annurev-matsci-070214-021132

Raschka, S., Patterson, J., & Nolet, C. (2020). Machine Learning in Python: Main Developments and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence. Information, 11(4), 193. https://doi.org/10.3390/info11040193

Stanciulescu, A., Castronovo, F., & Oliver, J. (2022). Assessing the impact of visualization media on engagement in an active learning environment. International Journal of Mathematical Education in Science and Technology, 1–21. https://doi.org/10.1080/0020739X.2022.2044530

Vadiraja, S., & Cervantes, H. (2004). Smart Materials: Teaching Approaches For Understanding And Evaluating Mechanical Properties And Microstructures. 2004 Annual Conference Proceedings, 9.1101.1-9.1101.9. https://doi.org/10.18260/1-2--12842

Wang, Y., Wu, X., Li, X., Xie, Z., Liu, R., Liu, W., Zhang, Y., Xu, Y., & Liu, C. (2020). Prediction and Analysis of Tensile Properties of Austenitic Stainless Steel Using Artificial Neural Network. Metals, 10(2), 234. https://doi.org/10.3390/met10020234

Wei, J., Chu, X., Sun, X., Xu, K., Deng, H., Chen, J., Wei, Z., & Lei, M. (2019). Machine learning in materials science. InfoMat, 1(3), 338–358. https://doi.org/10.1002/inf2.12028




DOI: http://dx.doi.org/10.29300/ijisedu.v6i2.3114

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 IJIS Edu : Indonesian Journal of Integrated Science Education

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IJIS Edu: Indonesian Journal of Integrated Science Education
ijis.edu@mail.uinfasbengkulu.ac.id

 

Lantai 2 Fakultas Tarbiyah dan Tadris
Universitas Islam Negeri Fatmawati Sukarno Bengkulu
Jl. Raden Fatah Kel. Pagar Dewa Kec. Selebar Kota Bengkulu

 

  Creative Commons License
IJIS Edu : Indonesian Journal of Integrated Science Education This is published by UIN Fatmawati Sukarno Bengkulu and distributed with the permission below Creative Commons Attribution-ShareAlike 4.0 International License