Tren Terbaru Penerapan Machine Learning Mendeteksi Masalah dalam Kesehatan Mental Perspektif Hukum Islam
Abstract
Keywords: Machine Learning, Mental health, Revolution industry 4.0
Abstrak : Teknologi Machine Learning atau Pembelajaran mesin adalah suatu metode yang sedang berkembang dalam beberapa tahun terakhir telah banyak di implementasikan dan dipelajari sebagai alternatif dari system deteksi gangguan kesehatan mental. Penerapan Teknologi Machine learning merupakan suatu bentuk upaya peranan teknologi dalam berkontribusi di bidang kesehatan khususnya bidang psikoterapi. Pada artikel ilmiah ini akan berdiskusi berkaitan penerapan teknologi machine learning dengan pendekatan literature review. Penerapan teknologi machine learning terbukti potensinya sebagai system deteksi dini bagi masalah kesehatan mental. Tekonologi machine learning juga mampu melakukan pengukuran dengan hasil yang baik. Pada penulisan artikel ini, pengetahuan dasar akan dirangkum mengenai penelitian pengaplikasian teknologi machine learning terbaru untuk system diagnosis gangguan kesehatan mental dengan menggunakan beberapa metode komputasi algoritma baik secara perhitungan matematis dan kecerdasan buatan sebagai system untuk menganalisis kesehatan mental sebagai perwujudan hadirnya revolusi industry 4.0.
Kata kunci: Teknologi Machine Learning, Kesehatan Mental, Revolusi Industry 4.0
Keywords
Full Text:
PDFReferences
Daftar Pustaka
Dicoding.com, ‘Pengertian Machine Learning Atau Mesin Pembelajaran’, 2020 [accessed 25 November 2020]
Durstewitz, Daniel, Georgia Koppe, and Andreas Meyer-Lindenberg, ‘Deep Neural Networks in Psychiatry’, Molecular Psychiatry, 24.11 (2019), 1583–98
Gamble, Katherine R., Jean M. Vettel, Debra J. Patton, Marianna D. Eddy, F. Caroline Davis, Javier O. Garcia, and others, ‘Different Profiles of Decision Making and Physiology under Varying Levels of Stress in Trained Military Personnel’, International Journal of Psychophysiology, 131 (2018), 73–80
Goshvarpour, Atefeh, Ataollah Abbasi, and Ateke Goshvarpour, ‘An Accurate Emotion Recognition System Using ECG and GSR Signals and Matching Pursuit Method’, Biomedical Journal, 40.6 (2017), 355–68
Hariharan, Anuja, and Marc Thomas Philipp Adam, ‘Blended Emotion Detection for Decision Support’, IEEE Transactions on Human-Machine Systems, 45.4 (2015), 510–17
Hemanth, D. Jude, J. Anitha, and Le Hoang Son, ‘Brain Signal Based Human Emotion Analysis by Circular Back Propagation and Deep Kohonen Neural Networks’, Computers and Electrical Engineering, 68.April (2018), 170–80
Jatmiko, Wisnu, ‘Machine Learning In Brief’, Fakultas Ilmu Komputer Universitas Indonesia (Indonesia: Universitas Indonesia, November 2020)
Kementerian Kesehatan RI Badan Penelitian dan Pengembangan, ‘Hasil Utama Riset Kesehatan Dasar’, Kementrian Kesehatan Republik Indonesia, 2018, 1–100
———, ‘Hasil Utama Riset Kesehatan Dasar’, Expert Opinion on Investigational Drugs, 7.5 (2013), 803–9
Khezri, Mahdi, Mohammad Firoozabadi, and Ahmad Reza Sharafat, ‘Reliable Emotion Recognition System Based on Dynamic Adaptive Fusion of Forehead Biopotentials and Physiological Signals’, Computer Methods and Programs in Biomedicine, 122.2 (2015), 149–64
Lim, Wei Lun, Yisi Liu, Salem Chandrasekaran Harihara Subramaniam, Serene Hui Ping Liew, Gopala Krishnan, Olga Sourina, and others, EEG-Based Mental Workload and Stress Monitoring of Crew Members in Maritime Virtual Simulator, Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Springer Berlin Heidelberg, 2018), 10830 LNCS
Nakisa, Bahareh, Mohammad Naim Rastgoo, Dian Tjondronegoro, and Vinod Chandran, ‘Evolutionary Computation Algorithms for Feature Selection of EEG-Based Emotion Recognition Using Mobile Sensors’, Expert Systems with Applications, 93 (2018), 143–55
Sabar, Adhi Harmoko Saputro, and Cuk Imawan, ‘Salt Content Prediction System of Dried Sea Cucumber (Beche-de-Mer) Based on Visual Near-Infrared Imaging’, 2019 4th Asia-Pacific Conference on Intelligent Robot Systems, ACIRS 2019, 2019, 245–49
Tanveer, M., B. Richhariya, R. U. Khan, A. H. Rashid, P. Khanna, M. Prasad, and others, ‘Machine Learning Techniques for the Diagnosis of Alzheimer’s Disease: A Review’, ACM Transactions on Multimedia Computing, Communications and Applications, 16.1s (2020)
World Health Organization., ‘Mental Health: A State of Well-Being’, 2020
World health Organization, ‘Promoting Mental Health: Concepts, Emerging Evidence, Practice’, WHA Global Nutrition Targets 2025: Low Birth Weight Policy Brief (Geneva, Switzerland, 2004, 2014), p. 1
Yoo, Gilsang, Sanghyun Seo, Sungdae Hong, and Hyeoncheol Kim, ‘Emotion Extraction Based on Multi Bio-Signal Using Back-Propagation Neural Network’, Multimedia Tools and Applications, 77.4 (2018), 4925–37
Zhang, Qiang, Xianxiang Chen, Qingyuan Zhan, Ting Yang, and Shanhong Xia, ‘Respiration-Based Emotion Recognition with Deep Learning’, Computers in Industry, 92–93 (2017), 84–90
DOI: http://dx.doi.org/10.29300/qys.v9i2.5811
Refbacks
- There are currently no refbacks.
Qiyas : Jurnal Hukum Islam dan Peradilan
qiyas@mail.uinfasbengkulu.ac.id
Universitas Islam Negeri Fatmawati Sukarno Bengkulu
Jl. Raden Fatah Kec. Selebar Kel. Pagar Dewa Kota Bengkulu
(0853-8130-5810)
Indexing by :
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.